

Reliability of GaSb-based lasers for space applications

Mathieu Fradet¹, Ryan Briggs¹, Clifford Frez¹, Siamak Forouhar¹, James Gupta², Jerry Meyer³, and Chris Webster¹

¹Jet Propulsion Laboratory, California Institute of Technology; ²National Research Council of Canada; ³Naval Research Laboratory

© 2018. All Rights Reserved.

Outline

- Space application
- Importance of GaSb-based semiconductor lasers
- Fabrication of GaSb-based LC-DFB lasers
- Long term reliability measurements
- Environmental testing of packaged lasers
- Conclusion

Space application

Tunable Laser Spectrometer (TLS) on Mars rover Curiosity

Principal investigator: Dr. Chris Webster, JPL

TLS is a two-channel tunable laser spectrometer using a 2.78 μ m diode laser and a 3.27 μ m Interband Cascade (IC) laser developed by Rui Q. Yang. These lasers operated at sub-ambient temperatures and required multi-stage coolers.

In the Mars <u>atmosphere</u>, and in gases driven out of <u>rocks</u> by pyrolysis, TLS measures $\rm CH_4$, $\rm CO_2$, $\rm H_2O$ and the isotopic ratios $\rm ^{13}C/^{12}C$, $\rm ^{18}O/^{17}O/^{16}O$, and D/H

Detection of atmospheric methane at low background levels (~0.5 ppbv) that show a <u>seasonal pattern</u>, and in episodic releases (7 ppbv) show Mars is active - *Webster et al.*, 2015

Space application

Combustion Product Monitoring (CPM) Instrument

Instrument manager: Dr. Ryan M. Briggs, JPL

CPM is a **six-channel tunable laser** that monitors gas concentrations that are representative of combustion product that would be expected from an on-orbit fire.

Developed for use in the Saffire experiment inside the Cygnus re-supply vehicle with a total power consumption below 12 W.

The gases measured are: O₂, CO₂, CO, HF, HCl, and HCN

Concentration range are: **HF, HCI, HCN: 2 - 50 ppmv**

CO: 5 - 1,000 ppmv

CO₂: 300 - 30,000 ppmv

O₂: 14 - 50%

Fabrication challenges for mid-IR semiconductor lasers

- Strong fundamental rovibrational modes of target compounds occur in the mid-infrared regime
 - Absorption measurements require corresponding midinfrared sources and detectors
- Lasers in the 2.4-3.6 µm wavelength range can best be addressed by GaSb-based material systems
- Complex bandgap engineering is required
- GaSb epitaxial growth for semiconductor lasers isn't widely available at commercial foundries
 - Suppliers are universities or national laboratories
- GaSb material systems not compatible with standard DFB laser fabrication
- Requires unique laterally-coupled feedback gratings
- Fabrication of reliable sources requires a great deal of insights

GaSb-based laser

GaSb-based semiconductor lasers can target numerous gases

- GaSb-based type-I diode lasers
 - InGaAsSb/AlInGaAsSb QWs
 - Viability proven in the 2- to 3.3-µm regime.
 - Use of this technology for HDO detection at 2.65 μm for climate sciences studies, and CH₄ and isotopic ratios detection at 3.27 μm for next-generation TLS.
- GaSb-based type-II interband cascade lasers
 - Developed by Rui Q. Yang
 - Multiple quantum well, hole and electron injector stages to emit multiple photons.
 - Use of this technology for HCl detection at 3.57 μm for combustion monitoring and astronaut safety.

Diode laser structure

IC laser structure

Fabrication of GaSb-based LC-DFB lasers

1/29/2018

SPIE Photonics West

Fabrication of GaSb-based LC-DFB lasers

LC-DFB diode laser

- Fabrication of 4- μ m wide ridges, grating pitch $\Lambda=m$ • λ/n_{eff} (m=1,2,3,...), duty cycle 70%.
- Laterally-coupled distributed feedback gratings were developed to avoid etching through the active structure due to reliability concerns.
- Gratings do not penetrate into the top barrier close to the ridges, but do so far from it.

LC-DFB IC laser

DFB laser architecture for IC lasers used a double-ridge design due to current spreading in the active region.

It reduces threshold current by a factor 6.

Hybrid configuration where the active region is etched all the way through, but this is done far from where the optical mode is generated

Diode performance

$2.65 \mu m$

Seven 6.6 nm InGaAsSb QWs separated by **20 nm quinary AlInGaAsSb barriers** and a 215 nm thick SCH layer between the upper and lower cladding layers and the QWs.

Current threshold 160 mA at 20 °C, and a tuning rate of 0.27 nm/°C The optical spectra measured with a FTIR shows a side-mode suppression ration (SMSR) over 25 dB

3.27 μm

Three 17 nm InGaAsSb QWs separated by 30 nm quinary AlInGaAsSb barriers and a 410 nm thick SCH layer between the upper and lower cladding layers and the QWs.

Current threshold 110 mA at 20 °C, and a tuning rate of 0.33 nm/°C The optical spectra measured with a FTIR shows a side-mode suppression ration (SMSR) over 25 dB

Diode performance

 $2.65 \mu m$

Constant current mode: 500 mA

Base temperature: 40 °C

Wavelength measurements made at 10 °C

- Peak wavenumber stabilizes after 100-200 hours
- The change in peak wavenumber is less than 2 cm⁻¹
- Measured red-shift in wavelength emission

$3.27 \mu m$

Constant current mode: 350 mA

Base temperature: 30 °C

Wavelength measurements made at 20 °C

- Peak wavenumber stabilizes after 100-300 hours
- The change in peak wavenumber is less than 1 cm⁻¹
- Measured red-shift in wavelength emission

IC laser emitting near 3.57 µm performance

Forouhar et al., Appl. Phys. Lett. 105 (2014)

Constant current mode: 200 mA

Base temperature: 40 °C

Current threshold 100 mA at 36 °C, and a tuning rate of 0.43 nm/°C The optical spectra measured with a FTIR shows a side-mode suppression ration (SMRS) over 25 dB

- Peak wavenumber stabilizes within 600 hours
- The change in peak wavenumber is less than 1 cm⁻¹
- Measured red-shift in wavelength emission
- We have fabricated reliable GaSb-based diode and IC lasers that operated for thousands of hour.

Failure cases

Stress due to CTE mismatch and poor solder flow

- CTE mismatch between submount and laser due to requirement in submount material.
- Poor solder flow, and the use of eutectic AuSn (hard solder) caused the device to break due to the CTE mismatch between the laser and submount.
- Problem was solved using indium solder (soft solder).

Device oxidation

- High aluminum content in cladding layers.
- Great laser performances.
- Reliability issues due to rapid oxidation of high aluminum-content layers causing delamination.
- Reduced aluminum content in cladding layers solved the oxidation issues.

Environmental testing of packaged 3.27 µm laser

Reliability of packaged lasers in their environment of operation is highly important.

Effort in reducing size and alignment complexity, replaced 3 lens collimator with a single lens inside a package with same form factor through a collaborative effort with Achray Photonics.

Highly divergent and asymmetric beam.

Single-lens collimator delivers outstanding beam profile measured from lensed package at Herriott cell entrance to the far mirror!

Laser far-field emission profile before packaging

Laser far-field emission profile after packaging

Environmental testing to MIL-STD 883 for space application

- Thermal Cycling
 - -40 °C to +80 °C, 8 cycles
- Leak Testing
 - Leak rate of 1.5 x 10⁻⁸ cc He/s after thermal cycling
- Random vibration based on TLS requirements
 - 20 to 40 Hz, +6 dB/octave
 - 40 to 450 Hz, 0.08 g^2/Hz
 - 450 to 2000 Hz, -6 dB/octave
- Shock loading to 60 g
 - 60 g, 10 ms, half-sine pulse
 - 3 tests per direction, 2 directions per axis
 - 18 shock loads total

Performance – Vibration and shock testing of 3.27 µm laser

Optical beam 12 cm away from the laser package

Before environmental testing

After environmental testing

- Current threshold, voltage, and output power do not change with environmental testing
- Emitted wavelength as a function of drive current remained constant
- Optical beam wasn't affected by the environmental testing meaning the lens mounting scheme isn't affected by typical environmental conditions

Future planetary probes require semiconductor lasers up to 10 µm

4.82 µm laser

Optical beam 12 cm away from the laser package

Before environmental testing

We developed semiconductor laser sources up to a wavelength of 10 μm that are suitable for space applications

Conclusion

- We have fabricated and tested reliable lasers at 2.65 μ m, 3.27 μ m, and 3.57 μ m
- We have developed and tested 3.27 μ m semiconductor lasers that are suitable for space applications
- We have developed semiconductor lasers for space applications that cover a wide mid-IR wavelength range

Future work

- Space qualification of IC lasers
- Lifetime measurements of lasers
- Development of Venus and Saturn probes
- Development of gas sensors for the ISS and Orion
- Development of novel gas sensors for Earth and climate sciences

Planetary structure and evolution

C. Webster, JPL

Human spaceflight operations

Earth and climate sciences

Liz Moyer, Univ. Chicago

Acknowledgement

 The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration

jpl.nasa.gov